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Abstract Environmental change alters ecosystem func-
tioning and may put the provision of services to human at

risk. This paper presents a spatially explicit and quantita-

tive assessment of the corresponding vulnerability for
Europe, using a new framework designed to answer mul-

tidisciplinary policy relevant questions about the

vulnerability of the human-environment system to global
change. Scenarios were constructed for a range of possible

changes in socio-economic trends, land uses and climate.

These scenarios were used as inputs in a range of ecosys-
tem models in order to assess the response of ecosystem

function as well as the changes in the services they provide.

The framework was used to relate the impacts of changing
ecosystem service provision for four sectors in relation to

each other, and to combine them with a simple, but generic

index for societal adaptive capacity. By allowing analysis

of different sectors, regions and development pathways, the
vulnerability assessment provides a basis for discussion

between stakeholders and policymakers about sustainable

management of Europe’s natural resources.
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Ecosystem services ! Adaptive capacity ! Europe

Introduction

Many facets of current global change have documented

immediate and strong effects on the natural environment,
including agriculture, forestry, watercourses; on cultural

values such as traditional landscapes, as well as on human

health and well being (Watson et al. 2000; UNEP 2002;
Reid et al. 2005). Furthermore, a globally growing human

population, with increasing per capita consumption of food

and energy, is expected to continue emitting pollutants to
the atmosphere, resulting in continued nitrogen deposition

and eutrophication of environments (Galloway 2001; Al-
camo 2002). In the face of these changes, it is important to

integrate and extend current operational systems for mon-

itoring and reporting on environmental and social
conditions (Kates et al. 2001). Both research projects and

also more operational environmental assessments are cur-

rently addressing these concerns at all relevant scales,
frequently in multidisciplinary collaborations. However,

integrating the information across disciplines remains a

considerable challenge (Millennium Ecosystem Assess-
ment 2003).

The concept of ‘‘ecosystem services’’ forms a useful link

between the functioning of ecosystems and their role for
society. A recent implementation distinguishes provisional

services (e.g. food, timber, medicines and fuels), regulating

Electronic supplementary material The online version of this
article (doi:10.1007/s10113-008-0044-x) contains supplementary
material, which is available to authorized users.

M. J. Metzger ! R. Leemans
Environmental Systems Analysis group, Wageningen University,
P.O. Box 47, 6700 AA Wageningen, The Netherlands

M. J. Metzger
Plant Production Systems group, Wageningen University,
P.O. Box 430, 6700 AK Wageningen, The Netherlands
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services (e.g. climate regulation and water purification),

cultural services (e.g. aesthetic values and sense of place)
and supporting services (e.g. nutrient cycling and climate

regulation) (Daily 1997; Millennium Ecosystem Assess-

ment 2003). The advantage of this concept is that most
services can be quantified, even if no single metric is

applied across their entire range. Impacts of global change,

including land use change, on ecosystems have been
observed (see reviews by Geist and Lambin 2002; Par-

mesan and Yohe 2003; Root et al. 2003; IPCC 2007) and
affect human society. In addition to immediate global

change effects on humans (e.g. sea-level rise or droughts),

an important part of human vulnerability to global change
is therefore caused by impacts on ecosystems and the

services they provide (Millennium Ecosystem Assessment

2003).
The synthesis chapter (Smith et al. 2001) of the Inter-

governmental Panel on Climate Change (IPCC) third

assessment report (TAR) recognized the limitations of
traditional impact assessments, where a few climate-

change scenarios are used to assess the response of a sys-

tem at a future time. Smith et al. (2001) challenged the
scientific community to move toward more transient

assessments that are functions of shifting environmental

parameters (including climate) and socio-economic trends,
and explicitly include the ability to innovate and adapt to

the resulting changes. A step towards meeting this chal-

lenge is their definition of ‘‘vulnerability’’.
Vulnerability is the degree to which a system is sus-

ceptible to, or unable to cope with, adverse effects of

climate change, including climate variability and extremes.
Although this definition addresses climate change only, it

includes susceptibility, which is a function of exposure,

sensitivity and adaptive capacity. The vulnerability concept
developed here (in the context of the EU Framework Five

Project ATEAM) is an elaboration of this definition as well

as an implementation of it. It was developed especially to
integrate results from a broad range of models and scenarios

(Schröter et al. 2005a). Projections of changing supply of

different ecosystem services and scenario-based changes in
adaptive capacity are integrated into vulnerability maps for

different socio-economic sectors (agriculture, forestry, cli-

mate regulation and nature conservation) (Metzger and
Schröter 2006; Metzger et al. 2004, 2005a, 2006). This

paper demonstrates how these vulnerability maps provide a

mean of making comparisons between ecosystem services,
sectors, scenarios and regions to tackle questions such as:

• Which regions are most vulnerable to global change?
• How do the vulnerabilities of two regions compare?

• Which sectors are the most vulnerable in certain

region?
• Which scenario is the least harmful for a sector?

The following sections first summarise the concepts of the

spatially explicit and quantitative framework for a vulner-

ability assessment for Europe. Then, results from the
assessment are presented. First, per socio-economic sector,

then, per principal European environmental zone (e.g.

comparing impacts between the Atlantic and the
Mediterranean).

Methods

The ATEAM methodology for a spatially explicit and
quantitative vulnerability assessment for global environ-

mental change in Europe is described in detail by Metzger

and Schröter (2006). We here focus on the conceptual
foundations and their rationale.

The concept of vulnerability

As a starting point, the IPCC definitions of vulnerability

to climate change, and related terms such as, exposure,

sensitivity and adaptive capacity, were broadened in order
to consider not only climate change, but also other global

changes such as land use change. Table 1 lists the defi-

nitions of some fundamental terms used in this paper and
gives an example of how these terms could relate to

climate regulation by ecosystems. From these definitions,

the following generic functions are constructed, describ-
ing the vulnerability of a sector relying on a particular

ecosystem service at a particular location (e.g. grid cell)

under a certain scenario and at a certain point in time.
Vulnerability is a function of exposure, sensitivity and

adaptive capacity (Eq. 1). Potential impacts are a function

of exposure and sensitivity (Eq. 2). Therefore, vulnera-
bility is a function of potential impacts and adaptive

capacity (Eq. 3):

V es, x, s, tð Þ ¼ f E es, x, s, tð Þ; S es, x, s, tð Þ;AC es, x, s, tð Þð Þ
ð1Þ

PI es, x, s, tð Þ ¼ f E es, x, s, tð Þ; S es, x, s, tð Þð Þ ð2Þ

V es, x, s, tð Þ ¼ f PI es, x, s, tð Þ;AC es, x, s, tð Þð Þ ð3Þ

where V is the vulnerability, E exposure, S sensitivity, AC
adaptive capacity and PI potential impact; es is a ecosys-

tem service, x grid cell, s scenario and t time slice.

These simple conceptual functions describe, how the
different elements of vulnerability are related to each other.

Nevertheless, they are not immediately operational for

converting maps of ecosystem services into vulnerability
maps. The following sections illustrate how vulnerability is

quantified and mapped in the present study, using one

ecosystem service indicator, net carbon storage, as an
example.
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Exposure, sensitivity and potential impacts

The IPCC projections of the main global change drivers,
based on the Special Report on Emissions Scenarios

(SRES) (Nakicenovic et al. 2000), were used to represent

exposure. SRES consists of a comprehensive set of narra-
tives that define the local, regional and global socio-

economic driving forces of environmental change (e.g.

demography, economy, technology, energy and agricul-
ture). The SRES storylines were structured in four major

‘‘families’’ labelled A1, A2, B1 and B2, each emphasises a

largely different set of social and economic development
pathways, organised along two axes. The vertical axis

represents a distinction between (A) more economically

and (B) more environmentally and equity orientated
futures. The horizontal axis represents the range between

(1) more globalisation and (2) more regionally oriented

developments. A summary of the storylines based on Ewert
et al. (2005) and Rounsevell et al. (2006), as well as

regional summaries of the climate and land use scenarios,

are provided as supplementary material to this paper.
Scenarios were developed for atmospheric carbon

dioxide concentration, climate (Mitchell et al. 2004), socio-

economic variables and land use (Rounsevell et al. 2006).

These scenarios are internally consistent, and considered

explicitly the global context of European land use (i.e.
import and export of agricultural goods). The IMAGE

implementation (IMAGE team 2001) of these scenarios

was used to define the global context (trade, socio-eco-
nomic trends, demography, global emissions and

atmospheric concentrations, climate change levels). The

high-resolution (10 arcmin 9 10 arcmin, approximately,
16 9 16 km in Europe) land use change scenarios used in

this vulnerability assessment were derived from an inter-
pretation of the SRES storylines. Rounsevell et al. (2006)

discuss the ATEAM scenarios in more detail. The vulner-

ability assessment spans a wide range of plausible futures
for three time slices (1990–2020, 2020–2050, 2050–2080).

Ecosystem service provision was estimated by ecosys-

tem models as a function of ecosystem sensitivity and
global change exposure. Schröter et al. (2005a) discuss

these models, and the projected changes in ecosystem

service provision, in more detail. The resulting range of
outputs for each ecosystem service indicator enabled the

differentiation of regions that are impacted under most

scenarios, regions that are impacted under specific sce-
narios and regions that are not impacted under any

scenario.

Table 1 Definitions of important terminologies related to vulnerability, with an example for the carbon storage sector

Term ATEAM definitions based on IPCC TAR Part of the
assessment

Carbon storage example

Exposure (E) The nature and degree to which ecosystems
are exposed to environmental change

Scenarios Increased demand, increased fire risk

Sensitivity (S) The degree to which a human-environment
system is affected, either adversely or
beneficially, by environmental change

Ecosystem models Ecosystems that store carbon are affected
by environmental change

Adaptation (A) Adjustment in natural or human systems to a
new or changing environment

Changes in local management, change in
tree species

Potential impact (PI) All impacts that may occur, given projected
environmental change, without considering
planned adaptation.

Increase in storage

Adaptive capacity
(AC)

The potential to implement planned
adaptation measures

Vulnerability
assessment

Capacity to implement a better fire
management

Vulnerability (V) The degree to which an ecosystem service is
sensitive to global change + the degree to
which the sector that relies on this service
is unable to adapt to the changes

Increased probability of carbon losses
through increased fire risk and inability
to adapt to this by, e.g. changing land
cover to less fire prone forests (e.g.
exchange eucalyptus plantations with
native forests)

Planned adaptation
(PA)

The result of a deliberate policy decision
based on an awareness that conditions have
changed or are about to change and that
action is required to return to, maintain or
achieve a desired state

The future will tell Better fire management

Residual impact (RI) The impacts of global change that would
occur after considering planned adaptation

Carbon loss to forest fires

IPCC TAR Intergovernmental panel on climate change third assessment report (IPCC 2001)
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The example maps in this manuscript are restricted to
the ecosystem service indicator net carbon storage (Fig. 1).

For this ecosystem service indicator, the vulnerability

approach is illustrated with maps for one scenario, the A11

Scenario, which assumes continued globalisation with a

focus on economic growth. The analysis of multiple sce-

narios is discussed at the end of this section.

Stratified potential impacts

The estimation of potential impacts is undertaken at the
regional scale, emphasising the differences across the

European environment. Simply comparing changes in

ecosystem services across Europe provides only a limited
analysis of regional differences because ecosystem services

are highly correlated with their environments. Some envi-

ronments have high values for particular ecosystem
services, whereas other regions have lower values. For

instance, Spain has high biodiversity, but low grain yields,

whereas The Netherlands has a far lower biodiversity, but a
very high grain yield. Therefore, while providing useful

information about the stock of resources at a European

scale, absolute differences in species numbers or yield
levels are not good measures for comparing regional

impacts between these countries. Looking at relative
changes would overcome this problem (e.g. -40% arable

land in Mediterranean south vs. +8% in the Boreal), but

also has a serious limitation: the same relative change can
occur in very different situations. Table 2 illustrates how a

relative change of -20% can represent very different

impacts, both between and within environments. Therefore
comparisons of relative changes in single grid cells must be

interpreted with great care.

For a meaningful comparison of grid cells across Eur-
ope, it is necessary to place potential impacts in their

regional environmental context, i.e. in an environmental

envelope, or stratum, that is suited as a reference for the
values in an individual grid cell. Because environments

will alter under global change, consistent environmental

strata must be determined for each time slice. The recently
developed environmental stratification of Europe (EnS)

was used to stratify the modelled potential impacts

(Metzger et al. 2005b; Jongman et al. 2006). The EnS was
created by statistical clustering of selected climate and

topographical variables into 84 strata. For each stratum, a

discriminant function was calculated for the variables
available from the climate change scenarios. With these

functions, the 84 climate classes were mapped for the

different Global Climate Models (GCMs), scenarios and
time slices, resulting in 48 maps of shifted climate classes

(Metzger et al. 2008). Maps of the EnS, for baseline and

the HadCM3–A1 scenario are mapped in Fig. 2 for 11
aggregated environmental zones (EnZ). With these maps,

all modelled potential impacts on ecosystems can be placed
consistently in their environmental context.

Within an environmental stratum, ecosystem service

indicators can be expressed relative to a reference value.
While any reference value is inevitably arbitrary, in order

to make comparisons, it is important that the stratification

is performed consistently. The reference value used in this
assessment is the highest ecosystem service value achieved

in an environmental stratum. This measure can be com-

pared to the concept of potential yield, defined by growth-
limiting environmental factors (Van Ittersum et al. 2003).

For a grid cell in a given EnS stratum, the fraction of the

Fig. 1 Net carbon storage
across Europe as modelled by
the LPJ model for the A2
scenario and the HadCM3 GCM
for climate and land use change.
Grey areas are net sources of
carbon. Carbon emission is not
mapped here because in the
vulnerability framework-
ecosystem services and
antagonist disservices cannot be
mapped together

1 In SRES, the A1 storyline was split in to three (fi: fossil intensive;
b: a mixed set and t: only renewables) to illustrate differences in
emissions caused by different combinations of energy carriers. For the
present analysis only A1fi, resulting in the highest emissions, was
used. In this paper, A1 therefore refers to A1fi.
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modelled ecosystem service provision relative to the

highest achieved ecosystem service value in the region

(ESref) is calculated, giving a stratified value of the eco-
system service provision (ESstr) with a 0–1 range for the

ecosystem service in the grid cell:

ESstr es, x, s, tð Þ ¼ ES es, x, s, tð Þ=ESref es, esn, x, s, tð Þ ð4Þ

where ESstr is the stratified ecosystem service provision,

ES ecosystem service provision and Esref highest achieved

ecosystem service value, es ecosystem service, x a grid
cell, s a scenario and t a time slice and ens an environ-

mental stratum.

In this way, a map is created, in which, potential impacts
on ecosystem services are stratified by their environment

and expressed relative to a reference value (Fig. 3).

Because the environment changes over time, both the ref-
erence value and the environmental stratification are

determined for each time slice. As shown in Fig. 3, the

stratified ecosystem service provision map shows more

regional detail than the original non-stratified map. This is

the regional detail required to compare potential impacts
across regions (see also Table 2). The change in stratified

ecosystem service provision compared to baseline condi-

tions shows how changes in ecosystem services affect a
given location (see also Table 2). Regions where ecosys-

tem service supply increases relative to the environment
have a positive change in potential impact and vice versa

(see Fig. 4). This change in ESstr (Eq. 5) gives a measure

of stratified potential impact (PIstr), which is used to
estimate vulnerability (see below).

PIstr es, x, s, tð Þ ¼ ESstr es, x, s, tð Þ % ESstr es, x, s, baselineð Þ
ð5Þ

where PIstr is stratified potential impact, ESstr stratified
ecosystem service provision, es ecosystem service, x a grid

cell, s a scenario, t a time slice and baseline = 1990.

Table 2 Example of changing ecosystem service supply (e.g. grain yield in t ha-1 a-1) in four grid cells and two different environments
between two time slices (t and t + 1)

Environment 1 Environment 2

Grid cell A Grid cell B Grid cell C Grid cell D

t t + 1 t t + 1 t t + 1 t t + 1

Ecosystem service provision (ES) 3.0 2.4 1.0 0.8 8.0 6.4 5.0 4.0

Absolute change -0.6 -0.2 -1.6 -1.0

Relative change (%) -20 -20 -20 -20

Highest ecosystem service value (ESref) 3.0 2.7 3.0 2.7 8.0 8.8 8.0 8.8

Stratified ecosystem service provision (ES str) 1.0 0.9 0.3 0.3 1.0 0.7 0.6 0.5

Stratified Potential Impact Index (PIstr) -0.1 0.0 -0.3 -0.1

The potential to supply the ecosystem service decreases over time in environment 1 and increases over time in environment 2. The ‘‘value in a
grid cell’’ is the ecosystem service supply under global change conditions as estimated by an ecosystem model. The relative change in ecosystem
service may not form a good basis for analysing regional potential impacts, in this examplem, it is always -20%. When changes are stratified by
their environment, comparison of potential impacts in their specific environmental context is possible. The ‘‘stratified potential impact’’ is the
‘‘value in a grid cell’’ divided by the ‘‘highest ecosystem service value’’ in a specific environmental stratum at a specific time slice (see text).
Note that in grid cell B, PIstr is 0.0 even though ES decreases because relative to the environmental condition, ecosystem service provision is
constant (see text)

Fig. 2 Climatic and
topographic variables were
statistically clustered into 84
environmental strata. By
calculating discriminant
functions for the strata, they can
be mapped for each global
change scenario, resulting in
maps of shifting climate strata
that can be used for stratification
(Metzger et al. 2008). For
presentation purposes, here the
strata are aggregated to 11
environmental zones
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Adaptive capacity index

Adaptation in general is understood as an adjustment in
natural or human systems in response to actual or

expected environmental change, which moderates harm or

exploits beneficial opportunities. Here, adaptive capacity
reflects the potential to implement planned adaptation

measures and is, therefore, concerned with deliberate

human attempts to adapt to or cope with change.
‘‘Autonomous adaptation’’ by contrast, does not constitute

a conscious response (e.g. spontaneous ecological

changes). The concept of adaptive capacity was intro-
duced in the IPCC TAR (IPCC 2001), according to which

the factors that determine adaptive capacity to climate

change include economic wealth, technology and infra-
structure, information, knowledge and skills, institutions,

equity and social capital. Thus far, only one study has

made an attempt at quantifying adaptive capacity based
on observations of past hazard events (Yohe and Tol

2002). For the vulnerability assessment framework, pres-

ent-day and future estimates of adaptive capacity were
sought that would be quantitative, spatially explicit and

based on, as well as consistent with, the different expo-

sure scenarios described above. Thus a generic index was
developed of macro-scale adaptive capacity. This index

was based on a conceptual framework of socio-economic

indicators, determinants and components of adaptive
capacity, e.g. GDP per capita, female activity rate, equity,

number of patents and age dependency ratio (Schröter

et al. 2003; Klein et al. manuscript). The index was cal-
culated for smaller regions (i.e. provinces and counties)

and differs for each SRES storyline. The index neither

includes the ability of individuals to adapt and it does not
take into account the possibility that wealthy regions may

be less adaptive in case of extreme disruptions in the

global economy. An illustrative example of the spatially-
explicit, generic adaptive capacity index over time is

given in Fig. 5, for the A1 scenario. Different regions in

Europe show different adaptive capacities, under this
scenario, lowest adaptive capacity is expected in the

Mediterranean, but the differences decline over time.

Vulnerability maps

The different elements of the vulnerability function (Eq. 3)

have now been quantified. The last step, the combination of
the stratified potential impact (PIstr) and the adaptive

Fig. 3 The modelled net carbon
storage maps are stratified by
the environmental strata.
Stratified ecosystem service
provision maps show greater
regional contrast than original,
un-stratified maps because
ecosystem service provision is
placed in a regional instead of a
continental context

Fig. 4 The change in stratified ecosystem service provision com-
pared to baseline conditions forms a stratified measure of the potential
impact for a given location. Positive values indicate an increase of
ecosystem service provision relative to environmental conditions, and
therefore a positive impact, while negative impacts are the result of a
decrease in ecosystem service provision compared to 1990
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capacity index (AC), is however the most difficult step,
especially when taking into account the limited empirical

basis of the adaptive capacity index. It was therefore

decided to create a visual combination of PIstr and AC
without quantifying a specific relationship between them.

The vulnerability maps illustrate which areas are vulnera-

ble. For further analytical purposes, the constituents of
vulnerability, the changes in potential impact and the

adaptive capacity index, are viewed separately.

Trends in vulnerability follow the trend in PIstr when
ecosystem service supply decreases, humans relying on

that particular ecosystem service become more vulnerable

in that region. Alternatively, vulnerability decreases when
ecosystem service supply increases. Adaptive capacity

lowers vulnerability. In regions with similar changes in

potential impact, a region with a high AC will be less
vulnerable than a region with a low AC. The PIstr deter-

mines the Hue, ranging from red (decreasing ecosystem

service provision, PIstr = -1, highest negative potential
impact) through yellow (no change in ecosystem service

provision, PIstr = 0, no potential impact) to green

(increase in ecosystem service provision, PIstr = 1, highest
positive potential impact). Note that it is possible that while

the modelled potential impact remains unchanged, the

stratified potential impact increases or decreases due to
changes in the highest value of ecosystem service supply in

the environmental class (ESref). Thus, when the environ-

ment changes, this is reflected in the potential impact.
Adaptive capacity determines colour saturation and

ranges from 50 to 100% depending on the level of the AC.

When the PIstr becomes more negative, a higher AC will
lower the vulnerability, therefore a higher AC value has a

lower saturation, resulting in a less-bright shade of red.

Alternatively, when ecosystem service supply increases
(PIstr[ 0), a higher AC value has a higher saturation,

resulting in a brighter shade of green. Conversely, in areas

of negative impact, low AC gives brighter red, whereas in

areas of positive impacts low AC gives less bright green.

Figure 6 shows the vulnerability maps and the legend for
‘‘farmer livelihood’’ under the A1 scenario for the Had-

CM3 GCM. Under this scenario, farmer livelihood

decreases in extensive agricultural areas. The role of AC
becomes apparent in rural France and Spain, where France

is less vulnerable than Spain due to a higher AC, i.e. a

supposed higher ability of the French agricultural sector to
react to these potential impacts.

Selected ecosystem services

This paper aims to quantify global-change concerns for

ecosystem service indicators for four sectors: agriculture,

forestry, nature conservation and climate regulation (see

Fig. 5 Socio-economic
indicators for awareness, ability
and action at the regional
NUTS2 (provincial) level were
aggregated to a generic adaptive
capacity index. Trends in the
original indicators were linked
to the SRES scenarios in order
to map adaptive capacity in the
21st Century. For all regions
adaptive capacity increases, but
some regions, e.g. Portugal,
remain less adaptive than others

Fig. 6 Vulnerability maps combine information about stratified
potential impact (PIstr) and adaptive capacity (AC), as illustrated
by the legend. An increase of stratified ecosystem service provision
decreases vulnerability and vice versa. At the same time vulnerability
is lowered by human adaptive capacity
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also Schröter et al. 2005a). These sectors rely on the sus-

tainable supply of ecosystem services, which can therefore
be used as a measure of human well being under the

influence of global change threats. This is similar to the

approach used by Luers et al. (2003) in looking at the
vulnerability of Mexican farmers to decreasing wheat

yields arising from climate damage and market

fluctuations.
The ecosystem service indicators were selected in a

close consultation process with stakeholders from sectors
relying on these ecosystem services (see also De la Vega-

Leinert et al. 2008). Schröter et al. (2005a) discuss these

ecosystem service indicators in more detail. Table 3 briefly
explains the indicators, which are analysed in the ATEAM

vulnerability assessment. Different ecosystem modelling

techniques are used for different sectors, but all ecosystem
models (listed in Table 3), use the same set of internally

consistent input scenarios for climate change and land-use

change.

Analysis

Each vulnerability map gives an intuitive overview for an
ecosystem service indicator for one scenario and for one

time slice. It is however, difficult to analyse the effects of

the four scenarios on the multiple ecosystem service
indicators for a multitude of vulnerability maps. Further-

more, because the legend of these maps is two-

dimensional (adaptive capacity and stratified potential
impact), it is difficult to analyse the cause of the vul-

nerability. For a comprehensive way of analysing the

vulnerability maps, it is necessary to look at AC and PIstr

separately. Furthermore, it can be important to look at the
original maps of the modelled ecosystem service provi-

sion, or at the global change scenarios, in order to fully

understand the vulnerabilities between different sectors
and regions in Europe.

To facilitate analysis of many maps created by the

ATEAM project, including the scenarios, maps of eco-
system service provision and adaptive capacity, a separate

software tool was developed (Metzger et al. 2004). This
digital atlas offers for both the scientific community and

other stakeholders access to the project’s results. The

ATEAM vulnerability-mapping tool generates fact sheets
for each selected map, providing essential background

information to help interpret the map. Furthermore, the

software provides some simple analysis functionality, e.g.
zooming to countries or environmental zones, simple map

queries and generating scatter plots summarize multiple

maps. The ATEAM vulnerability-mapping tool can be
downloaded from: http://www.pik-potsdam.de/ateam/.

An effective method of analysing multiple maps is by

creating scatter plots that summarise mean values of mul-
tiple maps for different regions, e.g. for different

environmental zones, and the four time slices (cf Fig. 7), or

maps for the four storylines summaries per environmental
zone for 2080 (cf Fig. 8). Such scatter plots help to analyse

differences across regions, time slices and alternative sto-

rylines. Furthermore, scatter plots can be used to analyse
the variability in model outputs for different GCMs. The

ATEAM vulnerability-mapping tool allows users to create

such scatter plots.

Table 3 Sectors, ecosystem
services they rely on and
indicators for these ecosystem
services that were chosen
together with stakeholders and
ecosystem models used in
ATEAM to model changes in
ecosystem services, listed per
sector

Sector Service Indicator

Agriculture Framer livelihood Agricultural land area

Soil fertility maintenance Soil organic carbon content

Forestry Wood production Net annual stem wood increment

Wood supply Net annual felling

Carbon storage Climate protection Net biome production, divided in net
carbon storage and net carbon emission

Biodiversity and nature
conservation

Beauty life support processes

Sector Model Reference

Agriculture Land use change scenarios Rounsevell et al. 2006

SUNDIAL Smith et al. 1996

ROTHC Coleman and Jenkinson 1996; Coleman
et al. 1997

Forestry GOTILWA+ Sabaté et al. 2002

Carbon storage LPJ (biogeochemistry) Sitch et al. 2003; fire dynamics: Venevsky
et al. 2002

Biodiversity and nature
conservation

Statistical niche modelling Araújo et al. 2002; Thuiller 2003
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Results

Results from the vulnerability assessment are presented

below for the 2080 time slice as scatter plots, summarizing

adaptive capacity and stratified potential impacts for the
four storylines across principal environmental zones. As

discussed before, individual vulnerability maps as well as

other maps generated by the ATEAM project are available
in the vulnerability-mapping tool (Metzger et al. 2004),

which also allows results to be presented per country. In the

discussion, the adaptive capacity and potential impact
results will be used to draw more general conclusions about

the European vulnerability to changes in ecosystem service

provision.

Adaptive capacity

The capacity of different countries and regions in Europe to
cope with the effects of global change is projected to

increase in the coming century, mainly as a result of

assumed economic growth. While gross domestic product
(GDP) growth is projected for all countries, countries that

currently have a lower adaptive capacity (e.g. the Medi-
terranean countries) are most able to utilise the projected

increase in wealth to substantially increase macro scale

adaptive capacity (Fig. 7). In these regions, increased
wealth is projected to have direct effects on the determi-

nants of AC, such as, infrastructure, technology and

equality. Countries that already show a large AC will also
benefit form a growing awareness of global change

impacts, but to a lesser degree, as shown in Fig. 7. In some

cases, a decreasing population trend will negatively affect
flexibility, and thus AC. By the end of the century, the

differences in AC across Europe converge. Nevertheless,

there is still considerable variation, with larger AC in
northern regions and lower AC in the Mediterranean

countries, as shown in Fig. 8. For these countries, the

development pathways associated with the scenarios have a
large influence. The A1 (global-economic) scenario pro-

jects the greatest increase in AC, while the B2 (regional-

environmental) scenario is associated with lower adaptive
capacity.

Potential impacts

The stratified potential impacts (PIstr) are summarised per

ecosystem service indicator, in a similar manner to adap-

tive capacity (Fig. 8). These scatter plots can now be used
to (1) compare the impacts on the different ecosystem

service indicators, (2) compare the impacts between

regions and (3) compare the influence of the SRES story-
lines. A summary of these scatter plots, where PIstr is

classified in five categories, is given in Table 4.

Agriculture

There are strong pressures on agricultural land use under

all future scenarios, resulting in declines in agricultural
production area. Therefore, PIstr for the farmer livelihood

indicator, based on land availability for agriculture, is

negative for most regions of Europe (Fig. 9). There appears
to be a trend towards more negative PIstr for more southern

environmental zones (EnZs). Especially, the Mediterranean

EnZs have very negative PIstr scores. There is a strong
influence of the SRES storylines on PIstr. Strong economic

Fig. 7 Scatter plot showing the development of adaptive capacity
(AC) in two environmental zones for the four SRES storylines.
Although AC increases much more rapidly in the Mediterranean
North than in the Atlantic North, towards the end of the 21st Century,
AC is still considerable higher in the Atlantic North

Fig. 8 Scatter plot of the mean adaptive capacity (AC) per environ-
mental zone in 2080 for the four SRES storylines. AC in southern
Europe is projected to remain lower than in northern Europe. The
influence of future development pathways is greater in southern
Europe than in northern Europe
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development (the A scenarios) is associated with the

largest land use changes, which translates into more
extreme impacts than the scenarios associated with envi-

ronmentally oriented development (the B scenarios).

Soil carbon will decrease due to two factors. Firstly,

climate change will speed decomposition of soil carbon
and secondly, the area under agriculture will decrease.

Areas that remain moist under increasing temperatures

Table 4 Summary of stratified potential impacts in five categories ranging from very negative to very positive change

Agriculturea Forestrya Climate regulationa Counta

A1 A2 B1 B2 A1 A2 B1 B2 A1 A2 B1 B2 – - 0 + ++

Alpine North - - 0 0 0 0 0 0 - - - - 0 6 6 0 0

Boreal - 0 0 0 + + + + – – – – 4 1 3 4 0

Nemoral - 0 0 0 0 0 0 0 0 0 0 0 0 1 11 0 0

Atlantic North - - 0 0 0 0 0 0 0 + + + 0 2 7 3 0

Alpine South - - - 0 0 0 0 0 + ++ + ++ 0 3 5 2 2

Continental - - - - 0 0 0 0 + ++ ++ ++ 0 4 4 1 3

Atlantic Central - – - - 0 0 0 + 0 + + + 1 3 4 4 0

Lusitanian - - - - 0 0 0 0 0 + ++ ++ 0 4 5 1 2

Med. mountains 0 0 0 - 0 0 0 0 0 ++ + ++ 0 1 8 1 2

Med. North - - - – 0 0 0 0 + ++ ++ ++ 1 3 4 1 3

Med. South 0 - - – 0 0 0 0 + + + + 1 2 5 4 0

Count

– 0 0 0 2 0 0 0 0 1 1 1 1

- 9 8 6 4 0 0 0 0 1 1 1 1

0 2 3 5 5 10 10 10 9 5 1 1 1

+ 0 0 0 0 1 1 1 2 4 4 5 3

++ 0 0 0 0 0 0 0 0 0 4 3 5

Birdsb Herptilesb Plantsb Treesb Countb

A1 A2 B1 B2 A1 A2 B1 B2 A1 A2 B1 B2 A1 A2 B1 B2 – - 0 + ++

Alpine North 0 0 - 0 0 - - 0 0 - – - - 0 - 0 1 7 8 0 0

Boreal 0 0 0 0 - - - - 0 0 0 - - 0 0 - 0 7 9 0 0

Nemoral 0 0 0 0 0 0 - 0 0 + + + - – - - 1 4 8 3 0

Atlantic North 0 0 0 0 0 0 + 0 0 0 0 0 0 + + + 0 0 12 4 0

Alpine South + + + + 0 0 0 0 0 0 0 0 - - - - 0 4 8 4 0

Continental 0 0 0 0 0 - 0 - - - 0 - – - 0 - 1 7 8 0 0

Atlantic Central 0 0 0 0 0 0 0 0 0 0 0 0 – - - - 1 2 12 0 0

Lusitanian 0 0 0 0 - - 0 0 - - 0 - – – – – 4 5 7 0 0

Med. mountains + + + + 0 0 0 + - 0 - 0 – - – - 2 4 5 5 0

Med. North 0 0 0 0 0 0 0 0 0 0 0 - – – – - 3 2 11 0 0

Med. South 0 0 0 0 0 0 0 0 + 0 0 0 - - – - 1 3 11 1 0

Count

– 0 0 0 0 0 0 0 0 0 0 1 0 5 3 4 1

- 0 0 1 0 2 4 3 2 3 3 1 5 5 5 4 8

0 9 9 8 9 9 7 7 8 7 7 8 5 1 2 2 1

+ 2 2 2 2 0 0 1 1 1 1 1 1 1 1 1

++ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

– PIstr (lower than –15), - PIstr (between –15 and –5), 0 PIstr (between –5 and 5), + PIstr (between 5 and 15), ++ PIstr (greater than 15)
a PIstr for multiple indicators were averaged
b Different indicators were summarized separately because projected impacts show great variability between indicators
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(e.g. the Boreal EnZ) will lose most of the carbon, whereas

in areas that become drier, soil carbon loss will be slowed.
PIstr remains relatively neutral across all EnZs, except for

the Boreal (Fig. 9). Furthermore, the influence of the SRES

storylines is weak.

Forestry

Climate change will have an overall positive effect on
forestry and therefore, on both indicators (wood production

and wood supply), except in the Mediterranean, where

higher temperatures and increased droughts increase tree
mortality and risk of forest fire. Furthermore, except for the

A2 scenario, all land use scenarios indicate an increase in

forest area (Kankaanpää and Carter 2004). This will result

in positive potential impacts on the ecosystem service

indicators. Nevertheless, the PIstr values are relatively
neutral, except for the Mediterranean, where PIstr is

slightly negative (Fig. 10). This is related to increased

droughts and fires. The SRES storylines do influence the
results slightly. In northern Europe, the global scenarios

(A) are most positive, while for southern Europe, the

environmentally oriented (B) scenarios are the most
positive.

Nature conservation

There are large differences in the potential impacts of

global change between different groups of species. The

distribution ranges of the exothermal reptiles and

Fig. 9 Scatter plots of stratified
potential impacts (PIstr) for the
indicators relevant for the
agriculture sector: farmer
livelihood and soil carbon

Fig. 10 Scatter plots of
stratified potential impacts
(PIstr) for the indicators
relevant for the forestry sector:
wood production and wood
supply
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amphibians are relatively unaffected by a warming climate.

Stratified potential impact values are also relatively stable
(Fig. 11). Also, for bird species, which generally have a

wide climatic distribution, the projected impacts are rela-

tively small. There are relatively positive values in the
Mediterranean mountains and the Alpine South. Plant

species and tree species on the other hand generally have a

narrower climatic envelope. For these groups of species,
the projected impacts will be the largest. An increase in

biodiversity is projected for northern Europe, while
southern Europe will see a strong decrease. For a large part,

these changes are a direct consequence of the shifts in

broad environment, since at the continental-scale biodi-
versity and environment are strongly correlated (see

‘‘Stratified potential impacts’’). PIstr is therefore not as

dramatic. Nevertheless, for plant species negative stratified
potential impacts are projected for Alpine North, conti-

nental, Lusitanian, Mediterranean mountains and

Mediterranean North (Fig. 11). For the tree species, PIstr is
negative or very negative in most regions of Europe

(Fig. 11).

Climate regulation

Climate protection by carbon storage is indicated by net
biome production, which can be split in the ecosystem

service net carbon storage, and the disservice net carbon

emission. To facilitate interpretation, values for the dis-
service are multiplied by -1. Negative values are therefore

always negative impacts, and vice versa.

Towards the end of the 21st century, the Alpine North
and Boreal are projected to become net carbon sources,

while the rest of Europe becomes a net carbon sink (Zaehle

et al. 2004). The negative stratified values in northern
Europe and positive values elsewhere indicate that the

increased sink is not just related to the shifting environ-

ments, but also to land use change, the age of the forests
and management. The negative PIstr for net carbon emis-

sion in Alpine North and Boreal is an effect of the age

structure of the forests in these regions. Expansion of for-
ests, projected under all land use scenarios except A2

(contributes to the positive values in the rest of Europe. As

can be seen in Fig. 12, there is a very strong difference in

Fig. 11 Scatter plots of
stratified potential impacts
(PIstr) for the indicators
relevant for the nature
conservation sector:
biodiversity of birds, reptiles
and amphibians, plants and trees
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the values of PIstr depending on the SRES storylines. The

B2 scenario is associated with the largest uptake and
smallest emission, while for the A1 scenario, the smallest

uptake and the largest emission is projected.

Discussion and specific findings

Adaptive capacity and stratified potential impacts have

been quantified and analyzed for the principal European

environmental zones (in Figs. 9–12). By combining the
findings from these graphs, it is possible to make some

general statements about the vulnerability of people relying

on ecosystem services, without quantifying the relative
contributions of PIstr or AC. Firstly, this is done for each of

the four sectors. Then, an attempt will be made to identify

those regions, which are most vulnerable to global change,
and those that are less vulnerable, and to assess the influ-

ence of the alternative development pathways.

Vulnerability per sector

Agriculture

The agricultural sector is potentially quite vulnerable to

global change. While the soil carbon indicators do not give

a strong signal in PIstr, in absolute terms they do tend to
decrease across Europe. Farmer livelihood does give a

strong PIstr signal, especially for the southern EnZs,

regions that depend more heavily on agriculture than
northern Europe. Also, as shown in Fig. 8, for southern

European EnZs, a lower AC is indicated than for northern

regions, making them especially vulnerable. In the northern

EnZs (Alpine North, Boreal, Nemoral, Atlantic North), the

PIstr values are only slightly negative. These regions are
also projected to have a high AC under all scenarios

(Fig. 8). From this, we can conclude that northern Europe

is less likely to be vulnerable to projected global changes.
Conversely, lower AC is indicated for southern EnZs

(Lusitanian, Mediterranean zones) and PIstr reach the very

negative values for farmer livelihood. Southern Europe,
therefore, seems considerably more vulnerable than

northern Europe.

The agriculture sector is potentially very vulnerable to
both climate and land use change, especially in southern

Europe.

Forestry

The ecosystem service indicators for the forestry sector

show a relatively neutral response. While changes in
management may be required to fully benefit from positive

effects of climate change, the increase in adaptive capacity

makes the forestry sector, in general, not very vulnerable.
Examples of possible adaptation strategies include more

intensive forest management and the introduction of new

tree species. Furthermore, the land use scenarios project an
increase in forest in most areas, especially under the B

scenarios. In the Mediterranean, forestry will face consid-

erable challenges to cope with increased droughts and risk
of forest fires. Here, more intensive management and

suitable tree species may be required for sustainable for-

estry. In the B scenarios, these negative impacts are partly
counteracted by increased areas available for forestry.

Under the A scenario, the stronger increase in AC could

help to cope with adverse effects of climate change.

Fig. 12 Scatter plots of
stratified potential impacts
(PIstr) for the indicators
relevant for the climate
regulation sector: net carbon
emission and uptake. Note that
values for net carbon emission
were multiplied by –1, therefore
all positive values correspond to
positive change and vice versa
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In most regions, the forestry sector will benefit from the

projected changes (increased area and productivity), how-
ever, the Mediterranean is potentially vulnerable.

Nature conservation

Species distribution patterns are projected to change con-

siderably. The aggregated figures presented here (Fig. 11)

show that there are large differences in impacts between
groups of species. But also, within the groups of species,

there will be considerable differences between individual
species. Furthermore, the results presented here assume full

migration of the species, and do not take into account

species turnover or species abundance. Nevertheless, these
results do show, how there are differences in impacts

between regions. Alpine North, Boreal, continental, Lu-

sitanian and Mediterranean North and South appear to face
the largest impacts. Relieving these potential impacts

through an increase in adaptive capacity will not always be

straightforward. However, if AC is also seen as the ability
to implement more adequate reserves, ecological networks

and protection programmes, perhaps the vulnerability

could be reduced. For nature conservation, there does
however seem to be a strong dichotomy between the

development pathways and AC. Here, one would expect

that the highest AC would be associated with B scenarios,
where society has a higher awareness of environmental

issues.

There is a great variation in projected vulnerability for
nature conservation, depending on the species (group), but

the wider Mediterranean and Boreal are potentially

vulnerable.

Climate regulation

Europe is projected to become a net source of carbon
(Zaehle et al. 2004). The greatest source of carbon will be

in northern Europe, due to aging forests. There is little that

can be done in the sphere of additional carbon storage by
forests because forests are already dominant in these

regions. The rest of Europe will acts as net carbon sink. In

part, this is due to a projected increase in the area under
forestry (Kankaanpää and Carter 2004). In addition, cli-

mate change will be beneficial for forest productivity in

most regions. However, an increased risk of forest fire
could reduce this potential sink (Schröter et al. 2005a).

While sustainable intensive management could help retain

stored carbon, there is only limited scope for further carbon
storage to counteract emissions.

Northern Europe is projected to be vulnerable with

respect to climate regulation, while other parts of Europe
show an increased capacity for carbon storage. Adaptation

measures will not be able to prevent Europe from becom-

ing a net source of carbon.

Vulnerability across Europe

As can be seen clearly from the summarising Table 4,
projected impacts from global changes vary greatly

between sectors. Agriculture faces, relatively negative

prospects for forestry impacts, will be relatively neutral,
and for the indicators for climate regulation impacts will be

positive in southern Europe, but negative in northern
Europe. For biodiversity, projected impacts vary greatly

between groups of species. Nevertheless, there are also

notable differences between regions of Europe.
Table 4 shows that Alpine North and the Boreal have

the most negative PIstr scores across the sectors. However,

because these regions also have the highest projected AC,
and in these regions agriculture is less important than in

most other parts of Europe, the overall vulnerability will

not be as great as it may seem at first.
Relatively neutral impacts are projected for the Nemoral

and the Atlantic North and Central. These regions also

have very-high AC scores, making these regions less vul-
nerable than the continental and Alpine South, regions

which face slightly more negative impacts as well as

having lower adaptive capacity.
Finally, the Mediterranean region is projected to have

the lowest AC, as well as large negative impacts for agri-

culture and biodiversity (Table 4), and to a lesser extent
forestry, as discussed previously. The Mediterranean

mountains are less vulnerable than the other Mediterranean

zones.

Influence of development pathways

As Figs. 8–12 and Table 4 show, in many cases, the dif-
ferent development pathways embodied by the SRES

storylines will influence the eventual vulnerability. Table 4

shows that for the sectors agriculture, forestry and climate
regulation, in combination, the A1 scenario has the most

negative scores (relatively more negative impacts than

positive impacts), A2 and B1 scores are more or less
neutral, and the scores for B2 are slightly positive. How-

ever, there are differences between sectors and making

specific statements about the preferred development path-
ways is a political matter outside the scope of this paper.

In addition, when combining findings about AC and

PIstr into conclusions about vulnerability, trade-offs
emerge around economic growth in southern Europe.

Economic growth is projected to lead to greater techno-

logical development, infrastructure, equity and power, and
thus to a higher AC. But at the same time, the SRES sce-

narios associated with the strongest economic growth (A1,
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A2) are the scenarios with the largest stratified potential

impacts. More specific statements about vulnerability for
southern Europe, therefore, require a better understanding

of the relationship between economic growth and AC.

Assumptions and uncertainties

Studies concerned with future developments are neces-

sarily based on many assumptions and clouded by
uncertainty. These uncertainties are complex and difficult

to generalize or indicate with each map. It is nevertheless
important to recognize this, making assumptions explicit

and discussing uncertainties. For the present study, three

categories of assumptions can be discerned: (1) those
associated with the SRES storylines and scenarios, (2)

those associated with the ecosystem models used to

estimate ecosystem service provision and (3) those asso-
ciated specifically with the vulnerability framework. The

first two categories are only briefly discussed here, as they

are published elsewhere. Assumptions and uncertainties
related to the vulnerability assessment are discussed in

more detail.

SRES (Nakicenovic et al. 2000) consists of a com-
prehensive set of narratives that define the local, regional

and global socio-economic driving forces of environ-

mental change (e.g. demography, economy, technology,
energy and agriculture). The storylines provide alternative

images of how the future might unfold and can act as an

integration tool in the assessment of global change
impacts. Because we cannot attach probability to any

given storyline, they can help stimulate open discussion.

It is however, important to realize that all storylines are
essentially arbitrary and therefore, do not likely depict the

most realistic future. The SRES storylines were used to

develop internally consistent scenarios for climate and
land use change. The four storylines used in ATEAM

cover 93% of the range of possible global warming pre-

sented by IPCC (Nakicenovic et al. 2000). Uncertainties
and assumptions for these datasets are discussed, respec-

tively, by Mitchell et al. (2004) and Rounsevell et al.

(2006). For the projections of ecosystem services, uncer-
tainties and assumptions are discussed by Schröter et al.

(2005a) and in the individual publications of the various

models, listed in Table 3.
The stratification adds additional conceptual complex-

ity to the vulnerability framework, but is of importance

for allowing comparison across the European environ-
ment. The environmental stratification that was used

(Metzger et al. 2005b; Metzger et al. 2008) is based on

the ATEAM climate change scenarios. Some additional
uncertainty is added by the statistical classification, as

discussed by Metzger et al. (2005b). However, one of the

more profound assumptions for the present study is the

choice of the reference values (ESref). Any reference

value that can be applied consistently across different
ecosystem services will necessarily be arbitrary. The

choice for the highest value of the ecosystem service

indicator with the EnS stratum was based on the con-
ceptual notion that potential values of the indicator is

restricted by environmental constraints. While this works

well for ecosystem indicators that are directly correlated
with wider environmental or climatic patterns, it could

have significant implications when the maximum value in
an outlier within the stratum.

The adaptive capacity indicator framework forms the

first scenario-based model of adaptive capacity. It forms a
basis for discussion on the future ability to cope with

projected changes, but it is based on several uncertain

assumptions. Firstly, the conceptual indicator framework,
while based on current scientific understanding of AC, is in

part arbitrary, and changes in the choice of indicators could

influence the outcome of the indicator. A second major
source of uncertainty is the assumption that historical

trends in the relation between the 12 indicators of AC and

GDP, and population, based on time-series data for the last
30 years, will remain the same in the 21st century. Finally,

there are uncertainties associated with the fuzzy aggrega-

tion of the 12 indicators to a single index. At present, the
adaptive capacity index remains unvalidated. Validation

will be difficult or perhaps impossible, making it difficult

to quantify uncertainties.
This last stage of the vulnerability framework, com-

bining the stratified potential impacts and the adaptive

capacity indicator into intuitive vulnerability maps also
includes some arbitrary choices, especially in the scaling of

the adaptive capacity index (saturation). The relative con-

tribution of AC will probably differ between sectors, across
ecosystem services, and perhaps between regions. The

present approach gives an initial indication of the combi-

nation of AC and PIstr into vulnerability, but for specific
issues they should be examined separately, and interpreted

in combination with ancillary information and knowledge.

Limitations of the approach

As indicated previously, there is a demand for methods to

integrate multidisciplinary assessments and to incorporate
measures of adaptive capacity (IPCC 2001; Kasperson and

Kasperson 2001; Schröter et al. 2005b). While such

methods are aimed at synthesising findings, there is the risk
of oversimplification or blurring initial findings with

complex meta-analyses and added uncertainties. The

present framework attempted to avoid oversimplification
by providing separate vulnerability maps for each ecosys-

tem service output. Furthermore, for a better

comprehension of vulnerability, it is important to analyse
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not only the vulnerability maps, but also the separate

components used to derive the vulnerability map. This
approach, with a multitude of maps, has consequences for

the ease of interpretation. Scatter plots form an effective

tool for summarising multiple maps, but also require spe-
cific software and computer skills. For the ecosystem

service indicators modelled by the ATEAM ecosystem

models, a separate software shell was developed to facili-
tate such analyses (Metzger et al. 2004).

Any processing of the modelled ecosystem services adds
both complexity and uncertainty. In the present approach,

this processing comprised three parts: (1) the stratification

of the ecosystem service maps adds considerable concep-
tual complexity, but is of importance for allowing

comparison across the European environment. Whilst both

the environmental stratification that was used (Metzger
et al. 2005b) and the reference value (ESref) are essentially

arbitrary, they can be applied consistently to different

ecosystem service indicators and scenarios, (2) the adaptive
capacity index forms the weakest part of the assessment,

but meets the needs for a macro-scale indicator. Arguably

separate indicators should be developed for different sec-
tors or ecosystem services and (3) the visual combination

of the two indices results in an intuitive map, but also

includes a bias, especially in the scaling of the adaptive
capacity index (saturation). The relative contribution of AC

can be manipulated by changing the scaling. As the

approach is applied, more advanced methods of combining
stratified potential impact (PIstr) and adaptive capacity

(AC) may be developed, i.e. through fuzzy logic or qual-

itative differential equations. However, a prerequisite for
this is the further understanding of how PIstr and AC

interact and influence vulnerability.

Concluding remark

The assessment reported here is a first attempt on quanti-

tative spatial vulnerability and many uncertainties remain.

The results from the present assessment show that vul-
nerability to global change differs between sectors, regions

and future scenarios, but that southern Europe is especially

vulnerable. Further analysis of the outputs can provide the
basis for discussion between stakeholders and policymak-

ers about sustainable management of Europe’s natural

resources.
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